剛看到葉峻榳醫師整理的糖尿病口服藥. 覺得非常棒. 趕緊筆記一下網址
https://www.yehclinic.com/oral-antidiabetic-agents/
高血壓 高尿酸 慢性腎病 胰島素 https://2019medicinenote.blogspot.com/2019/12/blog-post_57.html . 糖尿病相關筆記~目錄 https://2019medicinenote.blogspot.com/2020/01/blog-post_4.html
高血壓 高尿酸 慢性腎病 胰島素 https://2019medicinenote.blogspot.com/2019/12/blog-post_57.html . 糖尿病相關筆記~目錄 https://2019medicinenote.blogspot.com/2020/01/blog-post_4.html
糖尿病前期 住院醫師 陳筱筠1 主治醫師 鍾嫈嫈2
基 層 醫 學 第二十一卷第七期 172頁
澎湖40歲以上民眾
空腹血糖 110 以下, 糖尿病年發生率 0.8%
空腹血糖 110-126, 糖尿病年發生率 3.2%
積極的生活型態介入治療
而健康生活型態介入治療則可能比藥物治療效果更好、無副作用、而且可以同時減少心血管疾病的危險因子,所以目前被認為是預防糖尿病及心血管疾病發生的最好方式。
健康生活型態計劃包括
一、減重(減少5~7%體重);
二、減少脂肪攝取(少於25~30%總卡路里);
三、飽和脂肪酸少於10%總卡路里;
四、增加纖維攝取(每1,000卡熱量大於15
公克);
五、運動(中等程度運動,每星期150分
鐘以上)
Diabetes Prevention Program顯示
積極 的 生 活 型 態 介 入 治 療 對 於 空 腹 血 糖 在 100~125mg/dL且有口服葡萄糖耐性異常的 族群,可減少58%發生糖尿病的機會。
在高危險群中若7個人參加生活型態介入 治療,3年內將可防止1個人發生糖尿 病。
至於給藥組(metformin 850 mg bid)則 可減少31%發生糖尿病的機會。
Finnish Diabetes Prevention study及中國研究(Da Qing IGT and Diabetes Study)顯示
飲食與運動的確 可減少糖尿病的發生。
Acarbose 100 mg qd 減少糖尿病發生機率 24%
Troglitazone 400mg qd 減少糖尿病發生率 35%
而在STOP-NIDDM 及TRIPOD study中則分別顯示Acarbose 100mg tid及Troglitazone 400mg qd可減少 24%及35%糖尿病之發生機率。
由此可見 健康的生活型態介入及藥物,都可能有助 於延緩糖尿病之發生。
然而,藥物治療不僅花費昂貴、需 監測血糖以防低血糖發生、有其他副作用
而且對於是否能預防或延緩糖尿病之 併發症目前仍屬未知,也需要更多的研 究來比較其效果與成本效益。
根據陳國東等人1995-1999年於
澎湖對40歲以上600位民眾所做研究,發
現在整個族群,空腹血糖正常(<110mg/
dL)及空腹血糖異常者(110~125mg/dL)其
糖尿病的年發生率分別為 0.8%及3.2%。另外根據陳國東等人1995-1999年於
澎湖對40歲以上600位民眾所做研究,發
現在整個族群,空腹血糖正常(<110mg/
dL)及空腹血糖異常者(110~125mg/dL)其
糖尿病的年發生率分別為 0.8%及3.2%。
空腹血糖異常者相較於空腹血糖正常者, 發生糖尿病的危險比為4.4倍。
糖尿病前期增加微小血管病變發生之危險性
Momin MG等人追蹤5,023位美國原住
民 的 報 告 中 指 出 , 當 空 腹 血 糖 大 於
108mg/dL或兩小時飯後血糖大於162mg/
dL時,發生視網膜及腎臟病變的危險性
就已經開始上升。
糖尿病前期增加心血管疾病發生之危險性
心血管疾病是造成第二型糖尿病患
最常見的死亡原因,其所佔比率高達66%
以上。良好的血糖控制,可以延緩糖尿
病患微小血管的破壞(如蛋白尿的產生
),但是對冠狀動脈疾病的預防效果卻不
佳。可能的解釋為:高血糖對心血管的
傷 害 , 早 在 糖 尿 病 前 期 就 已 開 始 。 挪
威,Bjornholt JV.等人對40-59歲且空腹血
糖小於110mg/dL的1973位男性做過22年
的追蹤,發現空腹血糖大於85mg/dL的男
性,其因心血管疾病之死亡率為空腹血
糖 小 於 8 5 m g / d L 者 的 1 . 4 倍
(1.04~1.8)。DECODE Study 分析歐洲10個
回溯研究共15388位男性,7126位女性的
研究,則顯示在預測心血管疾病死亡率
方面,葡萄糖耐性異常的影響較空腹血
糖異常為大。
另外發現糖尿病前期者的心血管疾
病危險因子如:血壓、血脂肪、身體質
量指數、CRP等,都比正常組高。而這些
因子也正是我們診斷新陳代謝症候群的
條件因子,與胰島素阻抗性有關。
第 三 次 美 國 健 康 和 營 養 調 查(NHANES III)也顯示在25~75歲且空腹血 糖 在 1 0 0 ~ 1 0 9 m g / d L 的 成 人 , 百 分 之 八十九併有身體質量指數增加、高血壓 或高血脂等需採取運動、飲食控制之問 題 。 因 此 在 面 對 糖 尿 病 前 期 的 病 人 時,要同時注意是否合併其它心血管疾 病的危險因子。
預防糖尿病之發生 積極的生活型態介入治療,對空腹 血 糖 異 常 併 有 葡 萄 糖 耐 性 異 常 的 族 群,的確可以預防或延緩發生糖尿病的 機會。但是,對單純只有空腹血糖異常 而無葡萄糖耐性異常者的成效,則仍有 待研究證實(表2)。
Diabetes Prevention Program即顯示積極 的 生 活 型 態 介 入 治 療 對 於 空 腹 血 糖 在 100~125mg/dL且有口服葡萄糖耐性異常的 族群,可減少58%發生糖尿病的機會。而 在高危險群中若7個人參加生活型態介入 治療,3年內將可防止1個人發生糖尿 病。至於給藥組(metformin 850 mg bid)則 可減少31%發生糖尿病的機會。Finnish Diabetes Prevention study及中國大陸大慶葡 萄糖耐性異常及糖尿病研究(Da Qing IGT and Diabetes Study)也顯示飲食與運動的確 可減少糖尿病的發生。而在STOP-NIDDM 及TRIPOD study中則分別顯示Acarbose 100mg tid及Troglitazone 400mg qd可減少 24%及35%糖尿病之發生機率。由此可見 健康的生活型態介入及藥物,都可能有助 於延緩糖尿病之發生。 然而,藥物治療不僅花費昂貴、需 監測血糖以防低血糖發生、有其他副作用而且對於是否能預防或延緩糖尿病之 併發症目前仍屬未知,也需要更多的研 究來比較其效果與成本效益。而健康生 活型態介入治療則可能比藥物治療效果 更好、無副作用、而且可以同時減少心 血管疾病的危險因子,所以目前被認為 是預防糖尿病及心血管疾病發生的最好 方式。
健康生活型態計劃包括 一、減重(減少5~7%體重); 二、減少脂肪攝取(少於25~30%總卡路里); 三、飽和脂肪酸少於10%總卡路里; 四、增加纖維攝取(每1,000卡熱量大於15 公克); 五、運動(中等程度運動,每星期150分 鐘以上) 。
https://www.nejm.org/doi/full/10.1056/nejmoa022963
2021-09-25 20:44
先是在 AAAAI 網站看到磺胺類抗生素與非抗生素磺胺交叉反應的文章, 裡面提到2003年NEJM這篇. 所以把這篇也看一看, 做做筆記.
先說簡單的結論, 發生過磺胺類抗生素過敏的人, 當然也可以對非抗生素磺胺過敏, 但醫師應該要知道, 這類患者其實對任何所有藥物都可能過敏, 甚至發生 penicillin 過敏機率還超過非抗生素磺胺類(例如丹木斯), 所以磺胺類抗生素過敏, 並不是丹木斯過敏的好指標
過去認為磺胺類抗生素過敏, 會發生非抗生素磺胺過敏, 是基於理論推導, 並非真實的數據
Abstract
BACKGROUND
The safety of sulfonamide nonantibiotics is unclear in patients with prior allergic reactions to sulfonamide antibiotics.
METHODS
We conducted a retrospective cohort study using the General Practice Research Database in the United Kingdom, examining the risk of allergic reactions within 30 days after the receipt of a sulfonamide nonantibiotic. Patients with evidence of prior hypersensitivity after the receipt of a sulfonamide antibiotic were compared with those without such evidence. Similar analyses were also performed with the use of penicillins instead of sulfonamides, to determine whether any risk was specific to sulfonamide cross-reactivity.
RESULTS
Of 969 patients with an allergic reaction after a sulfonamide antibiotic, 96 (9.9 percent) had an allergic reaction after subsequently receiving a sulfonamide nonantibiotic. Of 19,257 who had no allergic reaction after a sulfonamide antibiotic, 315 (1.6 percent) had an allergic reaction after receiving a sulfonamide nonantibiotic (adjusted odds ratio, 2.8; 95 percent confidence interval, 2.1 to 3.7). However, the risk of allergic reactions was even greater after the receipt of a penicillin among patients with a prior hypersensitivity reaction to a sulfonamide antibiotic, as compared with patients with no such history (adjusted odds ratio, 3.9; 95 percent confidence interval, 3.5 to 4.3). Furthermore, among those with a prior hypersensitivity reaction after the receipt of a sulfonamide antibiotic, the risk of an allergic reaction after the subsequent receipt of a sulfonamide nonantibiotic was lower than the risk of an allergic reaction after the subsequent receipt of a penicillin (adjusted odds ratio, 0.7; 95 percent confidence interval, 0.5 to 0.9). Finally, the risk of an allergic reaction after the receipt of a sulfonamide nonantibiotic was lower among patients with a history of hypersensitivity to sulfonamide antibiotics than among patients with a history of hypersensitivity to penicillins (adjusted odds ratio, 0.6; 95 percent confidence interval, 0.5 to 0.8).
CONCLUSIONS
There is an association between hypersensitivity after the receipt of sulfonamide antibiotics and a subsequent allergic reaction after the receipt of a sulfonamide nonantibiotic, but this association appears to be due to a predisposition to allergic reactions rather than to cross-reactivity with sulfonamide-based drugs.
Results
Overall, 4.8 percent of patients (969 of 20,226) had an apparent allergic reaction within 30 days after receiving the initial sulfonamide antibiotic with use of the broad definition, and 0.4 percent (86 of 20,279) had an allergic reaction with use of the narrow definition. (These denominators differ slightly, because we excluded more patients with prior disease using the broad definition than using the narrow definition.) In both groups, 67.5 percent of patients were female and 43.5 percent of patients were 65 years of age or older at the time of exposure.
Overall, 2.0 percent of patients (411 of 20,301) had an apparent allergic reaction after subsequently receiving a sulfonamide nonantibiotic with use of the broad definition, and 0.1 percent (19 of 20,391) did so with use of the narrow definition. Patients with prior hypersensitivity after sulfonamide antibiotics and those without such a history were similar with respect to age (P=0.24), sex (P=0.94), and duration of follow-up in the General Practice Research Database (P=0.62).
A total of 9.7 percent of allergic reactions after the sulfonamide nonantibiotics (40 of 411) were serious enough to require hospitalization. The most common diagnoses included in our composite end point were asthma (288 of 411, or 70.1 percent), eczema (58 of 411, or 14.1 percent), and adverse drug reactions (47 of 411, or 11.4 percent). With the use of our narrow definition of outcome, the comparative results were not substantively different. Therefore, we used the broad definition for all subsequently presented results, unless specified otherwise.
The unadjusted odds ratio for the association between hypersensitivity or allergic reactions after receipt of a sulfonamide nonantibiotic and a history of hypersensitivity or allergic reactions to sulfonamide antibiotics, as compared with no such history, was 6.6 (95 percent confidence interval, 5.2 to 8.4) with use of the broad definition (Table 2) and 13.2 (95 percent confidence interval, 1.7 to 99.9) with use of the narrow definition. Results that included only the subgroup of patients whose symptoms were consistent with those of type I hypersensitivity or IgE-mediated reaction (i.e., anaphylaxis, bronchospasm, urticaria, laryngospasm, or angioedema) were substantively the same but imprecise, since only 18 patients had such reactions.
Since the majority of patients (98.4 percent) received trimethoprim–sulfamethoxazole as the initial drug, the results were identical between the group as a whole and the subgroup of patients who received trimethoprim–sulfamethoxazole as their initial sulfonamide antibiotic. The results also did not change substantively when the subgroups were classified according to the subsequent sulfonamide nonantibiotic that was prescribed: the unadjusted odds ratio was 5.7 (95 percent confidence interval, 4.0 to 8.3) for thiazides alone, 7.0 (95 percent confidence interval, 5.1 to 9.3) for loop diuretics alone, 6.9 (95 percent confidence interval, 3.0 to 15.9) for sulfonylureas alone, and 3.6 (95 percent confidence interval, 0.2 to 72.3) for other sulfonamide nonantibiotics.
Of the large number of potential confounders investigated, we found that the only variables that changed the odds ratio by at least 15 percent were preexisting asthma and prior use of asthma medications and corticosteroids. The adjusted odds ratio (after controlling for sex, age at outcome, and the presence or absence of preexisting asthma, prior use of asthma medications, and prior use of corticosteroids) was 2.8 (95 percent confidence interval, 2.1 to 3.7). The odds ratio was 2.9 (95 percent confidence interval, 1.9 to 4.2) for those younger than 65 years old and 2.6 (95 percent confidence interval, 1.7 to 4.0) for those 65 years of age or older. With the use of cessation of the sulfonamide nonantibiotic therapy (instead of allergic reactions) as the outcome, prior hypersensitivity to sulfonamide antibiotics was not a predictor for stopping therapy with a sulfonamide nonantibiotic (unadjusted odds ratio, 1.1; 95 percent confidence interval, 0.9 to 1.2).
Finally, to place the above results in perspective (Table 2), the unadjusted odds ratio for an allergic reaction after the receipt of a prescription for a penicillin for those with a prior reaction after a sulfonamide antibiotic, as compared with those without such a reaction, was 7.8 (95 percent confidence interval, 7.1 to 8.5), with an adjusted odds ratio of 3.9 (95 percent confidence interval, 3.5 to 4.3). Among those with an allergic reaction after receiving a sulfonamide antibiotic, the unadjusted odds ratio for an allergic reaction to a subsequent sulfonamide nonantibiotic, as compared with a subsequent penicillin, was 0.7 (95 percent confidence interval, 0.5 to 0.9), and the adjusted odds ratio was 0.7 (95 percent confidence interval, 0.5 to 0.9). Indeed, comparing patients with prior evidence of hypersensitivity after sulfonamide antibiotics with patients with prior evidence of hypersensitivity after penicillins showed that an allergic reaction occurred in 9.1 percent (81 of 889) and 14.6 percent (693 of 4736), respectively, within 30 days after they had received a subsequent sulfonamide nonantibiotic drug (unadjusted odds ratio, 0.6 [95 percent confidence interval, 0.4 to 0.7]; adjusted odds ratio, 0.6 [95 percent confidence interval, 0.5 to 0.8]) (Table 2).
Discussion
Our results suggest that, although allergy to a sulfonamide antibiotic is indeed a risk factor for a subsequent allergic reaction to a sulfonamide nonantibiotic, a history of penicillin allergy is at least as strong a risk factor. The association initially seen in the primary analysis with the sulfonamide nonantibiotics might be explainable by a general predisposition to allergic reactions among certain patients rather than a specific cross-reactivity with drugs containing the sulfa moiety. Thus, our results suggest that, if sulfonamide-based nonantibiotics were to be avoided in those with a prior sulfa allergy, they would also have to be avoided in those with a prior penicillin allergy. Alternatively, and perhaps more rationally, prescribers should simply understand that patients with a history of any type of allergic reaction after the receipt of sulfonamides or penicillins may be at increased risk for reactions to other drugs, rather than consider sulfonamides a specific contraindication. Indeed, previous data have indicated that a history of an adverse drug reaction increases the risk of a subsequent adverse drug reaction.1,22 Some data suggest that persons with atopy are at higher risk for reactions to penicillin,23 radiocontrast dye,24,25 anesthetics,22 muscle relaxants,22 barbiturates,22 acetaminophen,26 nonsteroidal antiinflammatory drugs,27 and multiple antibiotics.28 Other data indicate that persons with atopy are not at increased risk for a drug hypersensitivity reaction,1,29,30 but that they may have more severe reactions.1,22,31
Although sulfonamide allergy is unpredictable and potentially life-threatening, there are few systematic investigations of these reactions and even fewer studies of the risk of hypersensitivity reactions after the subsequent receipt of a nonantibiotic sulfonamide. Understanding these risks is especially important, because sulfonamide allergy is common. In addition, sulfonamide nonantibiotics include members of many extremely important pharmacologic classes. Previous data indicating a link between an allergic reaction to a sulfonamide nonantibiotic and a history of a reaction to a sulfonamide antibiotic are limited primarily to case reports.6,32-34 One meta-analysis of data from clinical trials of celecoxib, an antiinflammatory agent containing an arylsulfonamide moiety, found no increased risk of an allergic reaction related to sulfonamide sensitivity.6 A small cohort study at two teaching hospitals did not find cross-reactivity between trimethoprim–sulfamethoxazole and dapsone.35 We used a much larger cohort to explore systematically the risk of allergic reactions to all sulfonamide nonantibiotics in patients with a history of sulfonamide allergy. However, we could not include data on the use of some newer drugs, including celecoxib. Because allergens, haptens, and other immune mechanisms for sulfonamide hypersensitivity have not been identified, this risk could not be studied with the use of immunologic methods.
Several limitations may have influenced our results. Information bias could have resulted if the two study groups were asymmetric with respect to the completeness of the information on outcomes. However, the assessment of outcome was not dependent on the patients' recall or on interviewers, since the information was obtained from computerized medical records. Furthermore, we did not rely on physicians' attribution of adverse drug reactions. Although there are codes in the General Practice Research Database for drug-induced disease, we have no way of ensuring that the general practitioners used such a code rather than a code for the outcome itself (e.g., urticaria). Therefore, we were hesitant to make such a distinction. In addition, the validity of the attributed link in such case reports is questionable in many instances, because a clinician cannot always determine whether urticaria is due to a patient's exposure to a sulfonamide antibiotic, is related to another precipitant, or is idiopathic. The uncertain validity of such subjective judgments is why comparative epidemiologic studies such as ours are needed.
So-called diagnostic suspicion bias could have occurred if patients who had the exposure of interest were more closely monitored for the outcome of interest than those without this exposure; that is, if physicians were more likely to monitor patients with a history of sulfa allergies for allergic reactions after administering a nonantibiotic sulfonamide. However, such bias would have increased the risk of a positive association in the comparison of sulfonamides with penicillins, in contrast to the inverse association that we found.
Outcome misclassification might have occurred if the outcomes did not come to medical attention. However, they would have been detected in our analyses in which cessation of sulfonamide nonantibiotics was the outcome variable. Outcome misclassification could also have occurred if physicians did not use a formal diagnosis to document milder outpatient drug reactions, such as maculopapular rashes. Since we relied on primary medical records, not on claims data, this possibility is less likely to have been a problem. In addition, there is no reason why this factor should have differed between the study groups. Outcome misclassification could also have occurred if a patient had chronic allergic symptoms (e.g., asthma) and coincidentally took a sulfonamide. However, we controlled for preexisting allergic reactions in the analysis.
A selection bias might be introduced from the loss of patients after enrollment (either due to death or to transfer out of the practice). Such a loss is unlikely in a medical-record data base of general practitioners in the United Kingdom and was unlikely to be unequal in the two study groups.
Selection bias could also have been introduced if a patient with a prior sulfonamide antibiotic reaction were less likely to be prescribed a nonantibiotic sulfonamide than a patient with no such history. However, when we compared those with an allergic reaction within 30 days after receipt of the initial sulfonamide antibiotic with those without such a reaction, examining the probability of being prescribed a subsequent sulfonamide nonantibiotic at least 60 days later, we found a relative risk of 1.13 (95 percent confidence interval, 1.06 to 1.21). In other words, those with an allergic reaction after a sulfonamide antibiotic were slightly more likely to receive a subsequent sulfonamide nonantibiotic than those without such a history (17.0 percent vs. 15.3 percent). It is possible, however, that those with certain types of initial reactions were preferentially steered away from subsequent exposures. However, our results did not differ substantively according to whether the initial reaction did or did not meet our strict definition or whether the initial reaction did or did not result in hospitalization. Thus, it seems very unlikely that such a selection process could have affected our results.
Finally, we controlled for a large number of potential confounders in the analyses, and substantial confounding was seen from preexisting asthma and its treatment, which can, of course, be related both to subsequent asthma and to the use of antibiotics and other medications. We also cannot be certain that there were no other variables for which we could not control.
Thus, although a history of allergy to sulfonamide antibiotics is a marker of increased risk on subsequent exposure to sulfonamide nonantibiotics, our results suggest that this risk is not unique to sulfonamide antibiotics. Indeed, patients with a history of hypersensitivity to sulfonamide antibiotics are at even greater risk for subsequent reactions to penicillins, a biochemically distinct group, than to nonantibiotic sulfonamides. Prescribers should understand that patients with a history of allergic reactions to drugs may be at increased risk for all drug-induced adverse events that appear to be allergic in nature.
Q40.醫療照護工作人員COVID-19擴大採檢常見問與答
Q1. 醫療照護工作人員COVID-19擴大採檢相關規範有哪些?
「醫療照護工作人員COVID-19擴大採檢及個案處理流程」及「醫療照護工作人員COVID-19擴大採檢後注意事項」。
Q2. 醫療照護工作人員COVID-19擴大採檢之適用對象為何?
適用於醫院和住宿式衛福機構第一線照顧病人/服務對象的工作人員。。
Q3. 醫療照護工作人員COVID-19擴大採檢之條件為何?
具肺炎或嗅覺、味覺異常症狀者。或
具發燒/呼吸道症狀/不明原因腹瀉等症狀,醫師認為有進行 SARS-CoV-2 檢驗之必要者。
Q4. 經醫師評估符合醫療照護工作人員COVID-19擴大採檢之病人,該如何採檢送驗?
進行個案鼻咽擦拭液或咽喉擦拭液或痰液採檢,至傳染病個案通報系統「其他」項下「疑似新冠病毒感染送驗入口」通報送驗;個案如為醫事人員,需於通報單職業欄位選擇「醫師」、「護士」或「其他醫事人員」;如為醫院之非醫事人員,則選擇「醫院工作者(非醫事人員)」;如為照護機構工作人員,則選擇「醫療保健及社會福利服務業」。
Q5. 經醫師評估符合醫療照護工作人員COVID-19擴大採檢之病人,除了採檢送驗之外,醫療院所需配合哪些事項?
衛教個案落實「醫療照護工作人員COVID-19擴大採檢後注意事項」,且返家時應全程佩戴口罩,禁止搭乘大眾交通運輸工具。
Q6. 採檢時有哪些注意事項?
採檢應於單獨之病室或空間執行,並依感染管制措施指引,採取適當的防護措施。
Q7. 醫療照護工作人員COVID-19擴大採檢個案可否外出?
可外出,惟應遵循社區監測通報個案採檢後應注意事項。
Q8. 醫療照護工作人員COVID-19擴大採檢個案,何時可返回工作?
採檢個案於退燒超過24小時(未使用退燒藥)且相關症狀緩解後,不需等待檢驗結果陰性,可返回上班;惟返回工作後應遵循「醫療照護工作人員COVID-19擴大採檢後注意事項」所載事項。
Q9. 醫療照護工作人員COVID-19擴大採檢個案,返回工作有哪些注意事項?
遵循社區監測通報個案採檢後注意事項。
採檢後3日內(以採檢次日為第1日)或所有症狀尚未完全消失前,在醫療照護機構中應全程佩戴口罩,即使是在非照護區(如:休息區);建議應依劃分的空間或使用時段間隔使用休息區,如因飲食等情況,需要脫除口罩時,須維持社交距離原則。
採檢後3日內(以採檢次日為第1日)或所有症狀尚未完全消失前,避免與嚴重免疫功能低下(如:移植、血液腫瘤等)的病人或服務對象接觸。
後續若症狀加劇,應立刻停止上班;若於工作中出現前述情形,則應立即離開照護區,進行自我隔離,並通知主管,且應全程佩戴口罩及採取適當防護措施,儘速就醫評估,且不得搭乘大眾運輸工具。
Q10. 醫療照護工作人員COVID-19擴大採檢個案,如何獲知檢驗結果?
若檢驗為陽性,衛生單位或採檢院所會主動通知;若採檢3日內未接獲通知,等同陰性。
Q11. 醫療照護工作人員若符合「嚴重特殊傳染性肺炎」通報定義,可否以醫療照護工作人員COVID-19擴大採檢送驗?
不可以。請依「嚴重特殊傳染性肺炎通報個案處理流程」進行處置。
Q12. 醫療照護工作人員若為「嚴重特殊傳染性肺炎」通報個案,是否適用「醫療照護工作人員COVID-19擴大採檢後注意事項」?
不適用。醫療照護工作人員若為通報個案(非確診),於2次(採檢間隔至少24小時)採檢陰性且退燒24小時(未使用退燒藥)且相關症狀緩解後,始可返回上班。
Q13. 醫療照護工作人員若於居家隔離或居家檢疫期間出現疑似症狀,可否直接到採檢院所進行擴大採檢?
不可以。應主動與與當地衛生局聯繫,或撥1922,依指示儘速就醫,並應全程佩戴口罩及採取適當防護措施,且禁止搭乘大眾運輸工具就醫。
Q14. 經醫師評估需進行COVID-19採檢之病人,該如何處置?
醫療院所若非COVID-19全國指定社區採檢院所,請依「COVID-19(武漢肺炎)社區採檢網絡轉診注意事項」進行轉診。
若病人符合「嚴重特殊傳染性肺炎」通報定義,不論是否為醫療照護工作人員,請依嚴重特殊傳染性肺炎「通報個案處理流程」進行處置。
若病人為未符合「嚴重特殊傳染性肺炎」通報定義之醫療照護工作人員,請依「醫療照護工作人員COVID-19擴大採檢及個案處理流程」處置。
若病人未符合「嚴重特殊傳染性肺炎」通報定義且非醫療照護工作人員,請依「社區監測通報採檢及個案處理流程」處置。
原著文章 疾管署網頁
COVID-19疫苗簡介 投稿日期2021年03月31日, 刊登日2021 年 4月 13日
第 37 卷 第 7 期 蘇家彬(通訊作者)、陳孟妤、顏嘉嫺
表一、COVID-19 疫苗之不同平台比較
2021-05-25 新北市衛生局建議: 留在家中等候公衛人員通知, 症狀嚴重打119或1922或當地衛生局
https://www.facebook.com/ntpchealth/photos/4081598395264325
2021-05-19 衛福部建議, 確診之後打電話給自己的密切接觸者, 建議他們自我隔離及健康監測, 輕症患者在家隔離等候公衛人員通知, 症狀嚴重打119或1922或當地衛生局
https://www.facebook.com/mohw.gov.tw/photos/a.484593545040402/1884870828345993
照顧確診的家人(自己沒症狀), 禁止訪客, 不得外出, 與患者最後一次接觸(患者住院隔離或死亡)之後需居家隔離 14 天(接觸日隔天開始算)
https://www.facebook.com/mohw.gov.tw/photos/a.484593545040402/1884273591739050
2020-04-21 附件1-嚴重特殊傳染性肺炎通報個案處理流程.pdf
去年2020年訂的通報流程, 原本陽性個案都要收住院隔離
具感染風險者=自主健康管理者, 根據110-03-01 公告.
https://www.cdc.gov.tw/File/Get/PrLPDhC3xFzQiGLzua8iAA
1. 需排除正在居家檢疫和居家隔離者
2. 採檢陰性
3. 居家隔離期滿之後再七天(隔離期滿的下一天為Day 1 ), 身分變為自主健康管理
4. 與確診病患最後一次接觸的隔天開始算 14 天
5. 居家檢疫期滿之後再七天. 七天內身分變成自主健康管理
6. 無症狀可外出, 但需配戴口罩, 不可與他人近距離接觸(例如聚餐, 聚會, 公眾集會
7. 近距離是指室內 1.5 公尺, 室外 1 公尺
8. 禁止到醫院探病
9. 醫療或檢查應延後, 除非有急迫性
10. 若採檢, 報告出來之前禁止外出.
11. 有症狀者禁止外出
12. 有症狀若需就醫, 需先打電話給衛生局或 1922, 禁止搭乘大眾交通工具去醫院
通報定義, 109年4月16日制定
https://www.cdc.gov.tw/File/Get/AyHd8990mKy62q9Ld0brqA
醫師懷疑即可通報
旅遊史或接觸史或群聚, 有症狀即可通報
嗅覺味覺異常或腹瀉 + 旅遊史/接觸史即可通報
採檢驗出病毒即可通報
疾管署針對新冠 武漢 肺炎的QA,
Q23-32. 我是醫療機構醫護人員,院內發生入院後才確診的COVID-19確定病例,我在何種情況下會被列為接觸者?
觀察型研究發現,血中總膽固醇與或低密度脂蛋白膽固醇(low density lipoprotein cholesterol [LDL-C])的濃度升高,和腦中風的風險增加有相關性,特別是與大動脈粥狀硬化相關的缺血性 腦中風。如果有血脂異常,無論是否使用藥物治療都應進行生活型態改善。
對於動脈粥狀硬化相關 或非動脈粥狀硬化相關但合併有冠狀動脈疾病的的缺血性腦中風或短暫性腦缺血(transient ischemic attack[TIA])的病人,應使用高強效或中強效statin治療以預防未來發生的主要心血管事件,必要 時可合併ezetimibe,來降低LDL-C <70 mg/dL,且急性期過後持續使用statin是合理的。
急性缺血性 腦中風或TIA病人,如LDL-C >100 mg/dL或中風前有使用statin,於急性期住院期間使用statin是合理 的。
對於症狀性頸動脈狹窄或顱內動脈狹窄病人,控制LDL-C <70 mg/dL是合理的。
對於無症狀頸 動脈狹窄或顱內動脈狹窄病人,控制LDL-C <100 mg/dL是合理的。
參考資料 https://pubmed.ncbi.nlm.nih.gov/29108130/
以 metformin 做為基準值(1)來比較各種不同藥物的低血糖風險.
Glibenclamide(Glyburide) tab 低血糖風險 3.95
glimepiride 低血糖風險 3.28 發生率約 2-4%
Glipizide 低血糖風險 2.57
Nateglinide (Starlix) 低血糖風險 1.21
Repaglinide (novonorm) 低血糖風險 20.3
參考資料: 疾管署 第十章「潛伏結核感染
(LTBI)」有關LTBI治療處方說明
結核病診治指引-第10章潛伏
結核感染10905修正版
https://www.cdc.gov.tw/Uploads/6b5c1be7-5666-4dea-aabe-0ecbd5826c7d.pdf
3HP 3HR 4R 9H
已服用3HP治療轉換處方建議表
疼痛型的糖尿病神經病變可考慮給予藥物
pharmacotherapy for painful diabetic neuropathy.
https://www.uptodate.com/contents/management-of-diabetic-neuropathy#H2056659147
初次診斷氣喘之後, 建議開立 low dose ICS + LABA 治療氣喘, 不建議單獨使用 SABA (例如berotec)
1. 若症狀已經持續 2-4 年, 才開始使用 low dose ICS + LABA. 之後需要使用更高劑量的 ICS, 且肺部功能比較無法改善.
2. 嚴重急性發作之後如果沒有使用 ICS, 之後肺功能降低的狀況會持續一段很長時間
一篇為期 12 個月的研究發現, 使用PRN ICS + formoterol 相較於使用SABA, 能降低急性發作機率
Step 1 每個月發作少於兩次, 沒有其他誘發急性發作的危險因子
有症狀時使用低劑量吸入性類固醇ICS + formoterol, 或運動前使用
優於SABA only 或 ICS + prn SABA
相較於 SABA only., 使用 ICS + formoterol 可以減少 2/3 嚴重急性發作
可減少平均ICS劑量 20%
另一篇研究也顯示,使用 ICS + formoterol 相較於 SABA along 可減少六成急性發作
對於不常發作的患者, 每天使用ICS的遵從性較差, 這類患者容易落入 SABA only treatment, 增加危險性, 為了減少患者對於SABA依賴, 建議剛診斷asthma患者就給予 prn ICS + formoterol, 以免病患錯誤認知覺得SABA就可以治療氣喘
budesonide-formoterol 每天最大劑量 72 ug formoterol (symbicort 每一噴含 4.5 ug), 等於每天最多噴 16 次
但研究顯示, 輕微氣喘發作的, 噴到這麼多次的很少見, 通常是每周 3-4 次.